51 research outputs found

    Filament bifurcations in a one-dimensional model of reacting excitable fluid flow

    Get PDF
    Recently, it has been shown that properties of excitable media stirred by two-dimensional chaotic flows can be properly studied in a one-dimensional framework \cite{excitablePRL,excitablePRE}, describing the transverse profile of the filament-like structures observed in the system. Here, we perform a bifurcation analysis of this one-dimensional approximation as a function of the {\it Damk{\"o}hler} number, the ratio between the chemical and the strain rates. Different branches of stable solutions are calculated, and a Hopf bifurcation, leading to an oscillating filament, identified.Comment: 9 pages, 4 figures; elsart.cls styl

    Phototactic clustering of swimming microorganisms in a turbulent velocity field

    Get PDF
    We study the distribution of swimming microorganisms advected by a two-dimensional smooth turbulent flow and attracted towards a light source through phototaxis. It is shown that particles aggregate along a dynamical attractor with fractal measure whose dimension depends on the strength of the phototaxis. Using an effective diffusion approximation for the flow, we derive an analytic expression for the increase in light exposure over the aggregate and by extension an accurate prediction for the fractal dimension based on the properties of the advection and the statistics of the attracting field

    Chaotic mixing induced transitions in reaction-diffusion systems

    Full text link
    We study the evolution of a localized perturbation in a chemical system with multiple homogeneous steady states, in the presence of stirring by a fluid flow. Two distinct regimes are found as the rate of stirring is varied relative to the rate of the chemical reaction. When the stirring is fast localized perturbations decay towards a spatially homogeneous state. When the stirring is slow (or fast reaction) localized perturbations propagate by advection in form of a filament with a roughly constant width and exponentially increasing length. The width of the filament depends on the stirring rate and reaction rate but is independent of the initial perturbation. We investigate this problem numerically in both closed and open flow systems and explain the results using a one-dimensional "mean-strain" model for the transverse profile of the filament that captures the interplay between the propagation of the reaction-diffusion front and the stretching due to chaotic advection.Comment: to appear in Chaos, special issue on Chaotic Flo

    Excitable media in open and closed chaotic flows

    Get PDF
    We investigate the response of an excitable medium to a localized perturbation in the presence of a two-dimensional smooth chaotic flow. Two distinct types of flows are numerically considered: open and closed. For both of them three distinct regimes are found, depending on the relative strengths of the stirring and the rate of the excitable reaction. In order to clarify and understand the role of the many competing mechanisms present, simplified models of the process are introduced. They are one-dimensional baker-map models for the flow and a one-dimensional approximation for the transverse profile of the filaments.Comment: 14 pages, 16 figure

    Aggregation of chemotactic organisms in a differential flow

    Get PDF
    We study the effect of advection on the aggregation and pattern formation in chemotactic systems described by Keller-Segel type models. The evolution of small perturbations is studied analytically in the linear regime complemented by numerical simulations. We show that a uniform differential flow can significantly alter the spatial structure and dynamics of the chemotactic system. The flow leads to the formation of anisotropic aggregates that move following the direction of the flow, even when the chemotactic organisms are not directly advected by the flow. Sufficiently strong advection can stop the aggregation and coarsening process that is then restricted to the direction perpendicular to the flow

    Synchronization and oscillator death in oscillatory media with stirring

    Get PDF
    The effect of stirring in an inhomogeneous oscillatory medium is investigated. We show that the stirring rate can control the macroscopic behavior of the system producing collective oscillations (synchronization) or complete quenching of the oscillations (oscillator death). We interpret the homogenization rate due to mixing as a measure of global coupling and compare the phase diagrams of stirred oscillatory media and of populations of globally coupled oscillators.Comment: to appear in Phys. Rev. Let

    Noise-sustained coherent oscillation of excitable media in a chaotic flow.

    Get PDF
    Constructive effects of noise in spatially extended systems have been well studied in static reaction-diffusion media. We study a noisy two-dimensional Fitz Hugh-Nagumo excitable model under the stirring of a chaotic flow. We find a regime where a noisy excitation can induce a coherent global excitation of the medium and a noise-sustained oscillation. Outside this regime, noisy excitation is either diluted into homogeneous background by strong stirring or develops into noncoherent patterns at weak stirring. These results explain some experimental findings of stirring effects in chemical reactions and are relevant for understanding the effects of natural variability in oceanic plankton bloom

    Influence of turbulent advection on a phytoplankton ecosystem with nonuniform carrying capacity

    Get PDF
    In this work we study a plankton ecosystem model in a turbulent flow. The plankton model we consider contains logistic growth with a spatially varying background carrying capacity and the flow dynamics are generated using the two-dimensional (2D) Navier-Stokes equations. We characterize the system in terms of a dimensionless parameter, γ TB / TF, which is the ratio of the ecosystem biological time scales TB and the flow time scales TF. We integrate this system numerically for different values of γ until the mean plankton reaches a statistically stationary state and examine how the steady-state mean and variance of plankton depends on γ. Overall we find that advection in the presence of a nonuniform background carrying capacity can lead to very different plankton distributions depending on the time scale ratio γ. For small γ the plankton distribution is very similar to the background carrying capacity field and has a mean concentration close to the mean carrying capacity. As γ increases the plankton concentration is more influenced by the advection processes. In the largest γ cases there is a homogenization of the plankton concentration and the mean plankton concentration approaches the harmonic mean, 1/K -1. We derive asymptotic approximations for the cases of small and large γ. We also look at the dependence of the power spectra exponent, β, on γ where the power spectrum of plankton is k-β. We find that the power spectra exponent closely obeys β=1+2/γ as predicted by earlier studies using simple models of chaotic advection

    Reaction front propagation in a turbulent flow

    Get PDF
    The propagation of reaction fronts was studied by direct numerical simulations. The velocity field was obtained by integrating the Navier-Stokes equation. The structure of the reaction front and the enhancement of the front propagation speed were investigated. The ratio of eddy turnover times and of the characteristic chemical time scale was determined
    corecore